trifusion.base.plotter module

trifusion.base.plotter.bar_plot(*args, **kwargs)[source]

Creates a bar plot from a data array.

If a multi-dimensional array is provided, it will create a stacked bar plot.

Parameters:

data : numpy.array

Single or multi-dimensional array with plot data.

labels : list

List of xtick labels. Should have the same length as data.

title : str

Title of the plot.

ax_names : list

List with the labels for the x-axis (first element) and y-axis (second element).

lgd_list : list

For categorical plots, provide the label of each category.

reverse_x : bool

If True, reverse the x-axis orientation.

table_header : list

List with the header of the table object. Each element represents a column.

Returns:

fig : matplotlib.Figure

Figure object of the plot.

lgd : matplotlib.Legend

Legend object of the plot.

table : list

Table data in list format. Each item in the list corresponds to a table row.

trifusion.base.plotter.box_plot(*args, **kwargs)[source]

Creates box (whisker) plot.

Parameters:

data : numpy.array

Single or multi-dimensional array with plot data.

labels : list

List of xtick labels. Should have the same length as data.

title : str

Title of the plot.

ax_names : list

List with the labels for the x-axis (first element) and y-axis (second element).

Returns:

fig : matplotlib.pyplot.Figure

Figure object of the plot.

_ : None

Placeholder for the legend object. Not used here but assures consistency across other plotting methods.

table : list

Table data in list format. Each item in the list corresponds to a table row.

trifusion.base.plotter.histogram_plot(*args, **kwargs)[source]

Creates an histogram from data.

Parameters:

data : numpy.array

Array with plot data.

title : str

Title of the plot.

ax_names : list

List with the labels for the x-axis (first element) and y-axis (second element).

table_header : list

List with the header of the table object. Each element represents a column.

real_bin_num : bool

If True, then the table data will be forced to be in real numbers.

Returns:

fig : matplotlib.Figure

Figure object of the plot.

lgd : matplotlib.Legend

Legend object of the plot.

table : list

Table data in list format. Each item in the list corresponds to a table row.

trifusion.base.plotter.histogram_smooth(data, ax_names=None, table_header=None, title=None, legend=None)[source]

Creates a smooth histogram-like plot.

Creates a smooth line plot with colored areas with the same distribution as an histogram. It supports a multi-dimensional array, in which case each array will be used to create vertically stacked subplots.

Parameters:

data : numpy.array

Array with plot data.

ax_names : list

List with the labels for the x-axis (first element) and y-axis (second element).

table_header : list

List with the header of the table object. Each element represents a column.

title : str

Title of the plot.

legend : list

If using a multi-dimensional array, provide the name of each subplot.

Returns:

fig : matplotlib.pyplot.Figure

Figure object of the plot.

_ : None

Placeholder for the legend object. Not used here but assures consistency across other plotting methods.

table : list

Table data in list format. Each item in the list corresponds to a table row.

trifusion.base.plotter.interpolation_plot(*args, **kwargs)[source]

Creates black and white interpolation plot

Creates a black and white interpolation plot from data, which must consist of a 0/1 matrix for absence/presence of taxa in genes.

Parameters:

data : numpy.array

Single or multi-dimensional array with plot data.

title : str

Title of the plot.

ax_names : list

List with the labels for the x-axis (first element) and y-axis (second element).

Returns:

fig : matplotlib.pyplot.Figure

Figure object of the plot.

_ : None

Placeholder for the legend object. Not used here but assures consistency across other plotting methods.

_ : None

Placeholder for the table header list. Not used here but assures consistency across other plotting methods.

trifusion.base.plotter.multi_bar_plot(*args, **kwargs)[source]

Creates a multiple bar plot.

Creates a multiple bar plot from a multi-dimensional array. The bar plots from each array will be grouped and displayed side by side.

Parameters:

data : numpy.array

Single or multi-dimensional array.

labels : list

List of xtick labels. Should have the same length as data.

title : str

Title of the plot.

lgd_list : list

For categorical plots, provide the label of each category.

ax_names : list

List with the labels for the x-axis (first element) and y-axis (second element).

Returns:

fig : matplotlib.Figure

Figure object of the plot.

lgd : matplotlib.Legend

Legend object of the plot.

table : list

Table data in list format. Each item in the list corresponds to a table row.

trifusion.base.plotter.outlier_densisty_dist(*args, **kwargs)[source]

Creates a density distribution for outlier plots.

Parameters:

data : numpy.array

1D array containing data points.

outliers : numpy.array

1D array containing the outliers.

outliers_labels : list or numpy.array

1D array containing the labels for each outlier.

title : str

Title of the plot.

Returns:

fig : matplotlib.Figure

Figure object of the plot.

lgd : matplotlib.Legend

Legend object of the plot.

table : list

Table data in list format. Each item in the list corresponds to a table row.

trifusion.base.plotter.scatter_plot(*args, **kwargs)[source]

Generates a scatter plot from a 2D array.

Builds a scatter plot from a 2D array. Also calculates the correlation coefficient if requested by the correlation argument.

Parameters:

data : numpy.array

2D array containing the x and y data points.

correlation : bool

If True, the spearman’s rank correlation coefficient is calculated and added to the plot as an annotation

ax_names : list

List with the labels for the x-axis (first element) and y-axis (second element).

table_header : list

List with the header of the table object. Each element represents a column.

title : str

Title of the plot.

Returns:

fig : matplotlib.pyplot.Figure

Figure object of the plot.

_ : None

Placeholder for the legend object. Not used here but assures consistency across other plotting methods.

table : list

Table data in list format. Each item in the list corresponds to a table row.

trifusion.base.plotter.set_props(func)[source]

Decorator used to set general plot attributes

This decorator is use to automatically set several plot properties based on the arguments provided to the plotting functions. In this way, there is no need to write repetitive code in each function. The accepted arguments are:

  • ax_names : list. Axis names. First element is x-axis label, second is y-axis label
  • title : str. Title of the plot
trifusion.base.plotter.sliding_window(*args, **kwargs)[source]

Creates a sliding window plot.

Parameters:

data : numpy.array

Array with plot data.

window_size : int

Length of window size for sliding window.

table_header : list

List with the header of the table object. Each element represents a column.

title : str

Title of the plot.

ax_names : list

List with the labels for the x-axis (first element) and y-axis (second element).

Returns:

fig : matplotlib.pyplot.Figure

Figure object of the plot.

_ : None

Placeholder for the legend object. Not used here but assures consistency across other plotting methods.

table : list

Table data in list format. Each item in the list corresponds to a table row.

trifusion.base.plotter.stacked_bar_plot(*args, **kwargs)[source]

Creates a stacked bar plot.

Parameters:

data : numpy.array

Multi-dimensional array.

labels : list

List of xtick labels. Should have the same length as data.

title : str

Title of the plot.

table_header : list

List with the header of the table object. Each element represents a column.

title : str

Title of the plot.

ax_names : list

List with the labels for the x-axis (first element) and y-axis (second element).

normalize : bool

If True, values of the data array will be normalized by the normalize_factor

normalize_factor : int or float

Number used to normalize values of the data array.

Returns:

fig : matplotlib.Figure

Figure object of the plot.

lgd : matplotlib.Legend

Legend object of the plot.

table : list

Table data in list format. Each item in the list corresponds to a table row.

trifusion.base.plotter.triangular_heat(*args, **kwargs)[source]

Creates a triangular heatmap plot.

Parameters:

data : numpy.array

Triangular array with plot data.

labels : list

List of xtick labels. Should have the same length as data.

title : str

Title of the plot.

color_label : str

Label for colorbar.

Returns:

fig : matplotlib.pyplot.Figure

Figure object of the plot.

_ : None

Placeholder for the legend object. Not used here but assures consistency across other plotting methods.

table : list

Table data in list format. Each item in the list corresponds to a table row.